S 75
Sy7-&f

N91-17578

C Formal Verification with Unix
Communication and Concurrency

D. N. Hoover
Odyssey Research Associates, Ithaca NY

Abstract

This talk reports the results of a NASA SBIR project in which
we developed CSP-Aricl, a verification system for C programs which
use Unix system calls for concurrent programming, interprocess com-
munication, and file input and output. This project builds on ORA’s
Ariel C verification system by using the system of Iloare’s book Com-
municating Sequential Processes to model concurrency and communi-
cation. The system runs in ORA’s Clio theorem proving environment.
Wo ontline how we use CSP to model Unix concurrency, and sketch
the CSP semantics of a simple concurrent prograin. We discuss plans
for further development of CSP-Aricl.

C Formal Verification with
Unix communication and concurrency

(NASA SBIR)

Aim: Verification system for

e C programs

e Unix system calls

e concurrent programming (fork, wait,
exit, pipe)

e file and device i/o (read, write, open,

close).

Example program.

void producer ()
void consumer () ;
int pipedes(2];

void main{()

{ 4

int id;

if (pipe(pipedes) == -1) return;
id = fork():

if (id == -1) return;

if (id == 0) consumer():

else producer():

return;

}

void producer ()
{

char c:

int status;

while (read(0, &c, 1) !'= 0) /* 0 = standard input filedes */
write(pipedes|(1l}, &c, 1):

close (pipedes(1]):

exit (wait (&status));

}

void consumer ()

{

char c:

close(pipedes(1]): /* so that pipe read will fail when producer
closes its write end of pipe */
while (read(pipedes|(0]), &c, 1) != 0)
write(l, &c, 1); /* 1 = standard output filedes */
exit (0);
)

Example Program Schematic

stdin

B ——

Main

stdout

ey
- Main " pipe
- i

\j\l/ fork
D
producer > pipe > consumer

Technical Approach

e C semantics via Ariel operational semantics (pre-
existing)

e Unix communication and concurrency semantics
via Hoare's CSP

CSP (Communicating Sequential Processes)

e See Hoare's book, Communicating Sequential Pro-
cesses.

e An algebraic language for describing systems of
processes with synchronous communication.

e Objects of the language are processes and events.

e Processes resemble state machines, events the in-
put alphabet. Deterministic and nondeterministic
processes.

e Processes participate in events and are transformed
by them.

e Synchronous communication by participation in shared
events.

Unix modeling

e Unix processes, files, pipes, and certain
system tables are modeled as determinis-
tic CSP-processes.

e Forking, pipe creation, file opening and
closing, I/O, waiting, and exiting are mod-
eled as events.

Example: Asynchonous pipe communication

Sending process A, pipe P, receiving process
B.

Write(s) Write(s) Read (t) Read(s)

AjlP()|IB

Write(s)

A’ |P(s)|IB

Read (s)

AP 1B (s)

Processes transformed by events

Read (s)

Parent{|Child

Exit

Verification method
e C program given

e Ariel front end generates Caliban expression for
abstract syntax tree of program.

e Ariel C semantics plus Unix system call semantics
define denotation of a C program and associated
files inside operating system as a CSP process.

e Internal operations of systems of processes hidden
by CSP concealment operation.

e We reason about the resulting CSP process in
Clio. Main tools are induction on traces (event se-
quences) of processes, and algebraic laws of CSP.
Clio is a very general theorem prover, and we are
not limited in the kinds of properties we can prove
about processes.

Producer as a CSP process

Read char :
Write “c"

from
stdin

Read ""

Read "c*

(stdin closed)

Close pipe

close

Wait for
child

wait

Write char to
pipe

Icﬂ

Hiding events:

Overall process with non-I/O events hidden.

Read "c"

CONTENTS <- C:CONTENTS

Read a char from

stdin

CONTENTS
Write "head (CONTENTS)"

CONTENTS <- tail (CONTENTS)

Write a char to
stdin Write (head (CONTENTS))

CONTENTS CONTENTS <- tail (CONTENTS)

CONTENTS = ™"

RUN

CSP-Ariel Development Plan

e C semantics via Ariel symbolic interpreter (exist-
ing)

e Unix communication and concurrency semantics
via deterministic CSP (initial work completed).

e Extensions to support network communication planned
(sockets).

e Nondeterministic CSP and event concealment for
specification and modularity (planned)

° Graphic specification support using Romulus inter-
face (planned)

Clio, Caliban, and, Ariel

‘e Ariel is a semantic verification system for a sub-
set of C, written in Caliban and the Clio met-
alanguage. Floating point, overflow support via
asymptotic correctness.

e Caliban is a lazy, purely functional language based
on recursive equations and pattern matching.

e Clio is a higher-order logic theorem prover. Cal-
iban is its term definition language. Clio's main
proof methods are induction on Caliban defini-
tions, term rewriting, and case splitting.

